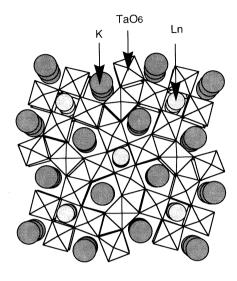
1212 Chemistry Letters 2000

Photocatalytic Water Splitting into H₂ and O₂ over K₂LnTa₅O₁₅ Powder

Akihiko Kudo,* Hiroaki Okutomi, and Hideki Kato

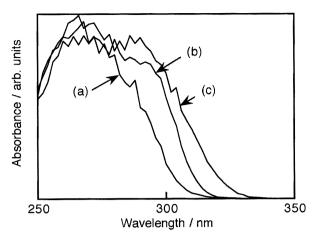

Department of Applied Chemistry, Faculty of Science, Science University of Tokyo, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601

(Received July 31, 2000; CL-000724)

 $K_2LnTa_5O_{15}$ (Ln=La, Pr, Nd, Sm, Gd, Tb, Dy, and Tm) loaded with NiO co-catalysts showed photocatalytic activities for water splitting into H_2 and O_2 in stoichiometric amounts under UV light irradiation ($h\nu > 3.9\text{-}4.1~\text{eV}$). The photocatalytic activities strongly depended on the lanthanide ions. Among them, $K_2PrTa_5O_{15}$ and $K_2SmTa_5O_{15}$ showed relatively high activities.

Development of new photocatalysts for water splitting is an important theme. Most photocatalysts reported for the water splitting are titanates.^{1,2} Authors have studied tantalate photocatalysts as a new series of photocatalyst materials and have reported that NiO-loaded K₃Ta₃Si₂O₁₃, NaTaO₃, SrTa₂O₆, BaTa2O6, and Sr2Ta2O7 showed high activities for the water splitting.^{3–7} On the other hand, Ishihara et al. have found that Ti, Zr, and Hf-doped KTaO₃ showed high activities.^{8,9} Machida and co-workers have reported photocatalytic activities of RbLnTa₂O₇ with a layered perovskite structure. 10,11 These photoactive tantalates possess the framework of TaO₆ octahedra sharing corners as seen in a perovskite structure. Excited energy becomes delocalized as the bond angle of M-O-M is getting close to 180°. 12 The increase in the degree of delocalization indicates the increase in the probability that photogenerated electron-hole pairs reach active sites for H2 or O2 evolution on the surface. Corner-sharing of MO6 octahedra leads the bond angle of M-O-M to be close to 180°. Therefore, the cornershared structure seems to play an important role for photocatalytic properties. It is important to study the photocatalytic behavior of materials with the corner-shared structure other than perovskite. K₂LnTa₅O₁₅ consists of a tungsten bronze structure in which TaO₆ octahedra are corner-shared each other as shown in Figure 1.13 From this structure, photocatalytic properties of K₂LnTa₅O₁₅ are of interest. This paper reports photocatalytic water splitting into H_2 and O_2 over the K₂LnTa₅O₁₅ powder.

K₂LnTa₅O₁₅ powders were prepared by solid state reactions. Starting materials used were as follows; K2CO3 (Kanto Chemical, purity; 99.5%), La₂O₃ (Wako Pure Chemical, purity; 99.99%), Ce₂(CO₃)₃·8H₂O (Wako Pure Chemical, purity; 98%), Pr₆O₁₁ (Wako Pure Chemical, purity; 99.5%), Nd₂O₃ (Rare Metallic, purity; 99.99%), Sm₂O₃ (Wako Pure Chemical, purity; 99.9%), Eu₂O₃ (Shin-etsu Chemical, purity; 99.9%), Gd₂O₃ (Kanto Chemical, purity; 99.95%), Tb₄O₇ (Soekawa Chemical, purity; 99.5%), Dy₂O₃ (Shin-etsu Chemical, purity; 99.9%), Tm₂O₃ (Soekawa Chemical, purity; 99.9%), Yb₂O₃ (Wako Pure Chemical, purity; 99.9%), Ta₂O₅ (Rare Metallic, purity; 99.99%). Each mixtures of K₂CO₃ (10% excess), lanthanide oxide, and Ta₂O₅ was calcined at 1620 K for 10 h in air using a platinum crucible.¹³ The products were confirmed to be single phases by X-ray diffraction (Rigaku, RINT-1400). NiO co-catalysts were loaded on the K₂LnTa₅O₁₅ powder by an impregna-


Figure 1. Tungsten bronze structure of $K_2LnTa_5O_{15}$. ¹³

tion method from Ni(NO₃)₂. The NiO/K₂LnTa₅O₁₅ powders were calcined at 620 K for 1 h in air. Photocatalytic water splitting was carried out in a gas-closed circulation system. Photocatalyst powder (1 g) was dispersed in 350 mL of pure water in an inner irradiation quartz cell by a magnetic stirrer. Samples were irradiated with a 400 W high pressure mercury lamp (SEN, HL400EH-5). Amounts of evolved H₂ and O₂ were determined using a gas chromatography (Shimadzu, GC-8A). Diffuse reflectance spectra were measured using a UV-VIS-NIR spectrometer with an integrating sphere (JASCO, Ubest-570). The diffuse reflectance spectra were converted by the Kubelka-Munk method.

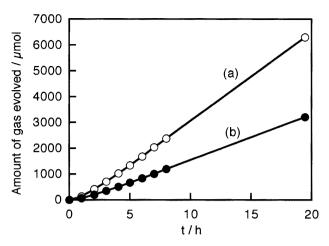
Figure 2 shows diffuse reflectance spectra of some K₂LnTa₅O₁₅. The onset of the spectrum of K₂PrTa₅O₁₅ was in the position at longer wavelength and that of K₂SmTa₅O₁₅ was at shorter wavelength than that of K2LaTa5O15. The onsets of K₂LnTa₅O₁₅ (Ln=Nd, Gd, Dy, Tm, and Yb) were in similar positions to that of K₂SmTa₅O₁₅ while K₂TbTa₅O₁₅ was similar to K₂PrTa₅O₁₅. These shifts indicate that rare earth ions affect the band structure of the framework consisting of TaO₆. The different ionic radius leads the different degree of distortion of the TaO₆ framework. Polarizing power electrostatically influences the orbitals of the TaO6 framework. Therefore, the energy structure of the TaO₆ framework is changed by these factors, resulting in the shift of the onset. 4d and 4f orbitals of rare earth ions might also affect the energy state of the TaO6 framework or form some energy levels in the band structure as indicated by Machida et al. 10,11

Table 1 shows photocatalytic activities for water splitting over NiO-loaded K₂LnTa₅O₁₅. K₂PrTa₅O₁₅ and K₂SmTa₅O₁₅ showed high activities whereas activities of K₂CeTa₅O₁₅,

Chemistry Letters 2000 1213

Figure 2. Diffuse reflectance spectra of (a) $K_2SmTa_5O_{15}$, (b) $K_2LaTa_5O_{15}$, and (c) $K_2PrTa_5O_{15}$.

 $K_2EuTa_5O_{15}$, and $K_2YbTa_5O_{15}$ were negligible. Because europium and ytterbium can take a divalent oxidation number relatively easily, they may work as electron trapping sites, resulting in the decrease in the photocatalytic activities. Although $K_2CeTa_5O_{15}$ absorbed visible light the activity was very low. The order of the photocatalytic activity to the kind of rare earth ions for $K_2LnTa_5O_{15}$ was different from that for $RbLnTa_2O_7$ with layered perovskite structure (Nd>Sm>>La>Pr) reported by Machida et al. 10,11 The difference in the order indicates that effects of rare earth ions to the


Table 1. Photocatalytic water splitting over NiO(0.5 wt%)/K₂LnTa₅O₁₅ powder

Catalyst	Band gap	Amounts of gases evolved/ µmola	
	/ eV	H_2	O_2
K ₂ LaTa ₅ O ₁₅	4.0	175	74
K ₂ CeTa ₅ O ₁₅	2.5	5	3
K ₂ PrTa ₅ O ₁₅	3.8	517	238
$K_2NdTa_5O_{15}$	4.1	125	60
K ₂ SmTa ₅ O ₁₅	4.1	623	272
K ₂ EuTa ₅ O ₁₅	3.9	2	0
K ₂ GdTa ₅ O ₁₅	4.1	240	73
K ₂ TbTa ₅ O ₁₅	3.9	174	77
K ₂ DyTa ₅ O ₁₅	4.1	358	172
K_2 TmTa ₅ O ₁₅	4.1	173	70
K ₂ YbTa ₅ O ₁₅	4.1	7	1

^aAfter 5 hours. Photocatalyst; 1.0 g, water; 350 ml, reaction cell; inner irradiation-type reaction cell made of quartz, light source; high pressure mercury lamp (400 W).

band structure of the ${\rm TaO_6}$ framework depend on the crystal structure

Figure 3 shows time courses of H_2 and O_2 evolution by water splitting on NiO(0.1 wt%)/ K_2 Pr Ta_5O_{15} . H_2 (334 μ mol/h)

Figure 3. Photocatalytic decomposition of pure water over nontreated NiO(0.1wt%)/K₂PrTa₅O₁₅. (a): H₂, (b): O₂

and O_2 (170 μ mol/h) steadily evolved in stoichiometric amounts. The turn over numbers of the amount of reacted electrons to the total number of tantalum and to the total number of nickel loaded were 3.4 and 940 at 20 h of the reaction time, respectively. These turn over numbers indicate that the reaction proceeded photocatalytically.

In conclusion, $K_2LnTa_5O_{15}$ with a tungsten bronze structure consisting of the framework of TaO_6 shared corners has arisen as a new photocatalyst group for water splitting into H_2 and O_2 . This result suggests the importance of the cornershared structure on photocatalyst materials.

This work was supported by Core Research for Evolutional Science and Technology (CREST), and a Grant-in-Aid (No. 11640601) from the Ministry of Education, Science, Sports, and Culture, Japan.

References

- 1 A. Kudo, Hyomen (Surface), **36**, 625 (1998).
- K. Domen, J.N. Kondo, M. Hara, and T. Takata, Bull. Chem. Soc. Jpn., 73, 1307 (2000).
- 3 A. Kudo and H. Kato, Chem. Lett., 1997, 867.
- 4 H. Kato and A. Kudo, Chem. Phys. Lett., 295, 487 (1998).
- 5 H. Kato and A. Kudo, Catal. Lett., 58, 153 (1999).
- 6 H. Kato and A. Kudo, Chem. Lett., 1999, 1207.
- A. Kudo, H. Kato, and S. Nakagawa, J. Phys. Chem. B, 104, 571 (2000).
- T. Ishihara, H. Nishiguchi, K. Fukamachi, and Y. Takita, J. Phys. Chem. B, 103, 1 (1999).
- C. Mitsui, H. Nishiguchi, K. Fukamachi, T. Ishihara, and Y. Takita, Chem. Lett., 1999, 1327.
- M. Machida, J. Yabunaka, and T. Kijima, *Chem. Commun.*, **1999**, 1939.
- 11 M. Machida, J. Yabunaka, and T. Kijima, *Chem. Mater.*, **12**, 812 (2000).
- 12 G. Blasse, J. Solid State Chem., 72, 72 (1988).
- 13 F. Brik, R. Enjalbert, C. Roucau, and J. Galy, *J. Solid State Chem.*, **122**, 7 (1996).